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Abstract

This study examined the phenotypic and genotypic relationship between working memory speed (WMS) and working memory
capacity (WMC) in 12-year-old twins and their siblings (N=409). To asses WMS all children performed a reaction time task with
three memory loads from which a basic mental speed measure and the derived slope were used. WMC was measured with two
subtests of the WISC-R, namely Arithmetic and Digit Span. The phenotypic correlations among the WMS and WMC indices were
around −0.30. Heritabilities for all variables ranged from 43% to 56%. Structural equating modelling revealed that a model with
two genetic factors, representing WMS and WMC, which were correlated (−0.54) fitted the data best, indicating that WMS and
WMC are partly mediated by the same set of genes and partly by separate sets of genes. When general IQ was simultaneously
analysed with the data the correlation between the genetic factors for WMS and WMC decreased (−0.25), but was still significant.
This means that ∼50% of the genetic correlation between WMS and WMC is explained by IQ.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Working memory is conceptualised as a limited
capacity system for information processing. It plays an
important role in all forms of cognition and is essential
in normal daily functioning, for example when reading
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the paper or watching a football game. It is now widely
accepted that WM is not a unitary system, but that it can
be divided into subsystems. An influential model was
proposed by Baddeley who presented a theoretical WM
framework with three distinguishable subcomponents
(Baddeley & Hitch, 1974; Baddeley, 1992). First, the
visuospatial sketch pad that manipulates visual images.
Second, the phonological loop that stores and rehearses
acoustic information. And third, the central executive,
which is an attentional controlling system that coordi-
nates and processes the information of the two other
components. Baddeley (2000) extended this model with

mailto:jc.polderman@psy.vu.nl
http://dx.doi.org/10.1016/j.intell.2006.03.010


550 T.J.C. Polderman et al. / Intelligence 34 (2006) 549–560
the episodic buffer. The episodic buffer represents a
limited capacity system, controlled by the central
executive that is capable of integrating information
from various sources into an episodic representation.

Several other authors proposed to partition WM in
different components. Miyake and Shah (1999) de-
scribed working memory as a non-unitary system of
processes and mechanisms that allows task-relevant
information to be stored temporary in an active state, for
further processing or recall. In a similar vein Cowan et
al. (2005) stated that WM is a set of mental processes
holding limited information in a temporary accessible
state in service of cognition. Oberauer, Süss, Wilhelm,
and Wittman (2003) defined WM as a set of limited
factors for performance in complex cognitive tasks,
organized as a hierarchy of related constructs. Partition
of WM in a neuro-anatomical way was for example
suggested by Owen (2000) who proposed a process-
specific distinction between maintenance and active
manipulation of information in WM, which is supported
by ventral and dorsal prefrontal cortical regions,
respectively. Smith and Jonides (1999) reviewed
neuro-imaging studies of the storage and executive
components of WM. They concluded that the storage
component of WM is activated by different frontal
regions like Broca's area and premotor areas while the
executive component involves the anterior cingulate and
dorsolateral prefrontal cortex.

It is hypothesized that g (with g being the operational
definition of ‘general intelligence’) is largely responsi-
ble for better performance on various tasks in which
speed and accuracy are involved (Gray & Thompson,
2004). A large number of studies explored the
relationship between WM and g (for an overview see
Buehner, Krumm, & Pick, 2005). High correlations
between WM and reasoning were found in early studies
by Kyllonen and Christal (1990), and recently Colom,
Rebollo, Palacios, Juan-Espinosa, and Kyllonen (2004)
found that WM was almost perfectly predicted by g.
Conway, Cowan, Bunting, Therriault, and Minkoff
(2002) found that among processing speed, short-term
memory capacity and WMC the latter was the best
predictor for general fluid intelligence. Other studies
could not replicate these very strong relationships (for
example Ackerman, Beier, & Boyle, 2005; Conway,
Kane, & Engle, 2003) but a general finding is that WM
and g are positively and significantly related. Which
specific components of WM play a role in this relation,
and how strong these relations are, remains unclear. A
small number of adult twin studies addressed the
question whether a genetic approach could be used to
clarify genetic components underlying WM per se, and
of the relationship between WM and intelligence. Ando,
Ono, and Wright (2001) studied a twin sample of young
adults to investigate the genetic structure of storage and
executive functions in the spatial and verbal working
memory domain. They also examined the relation
between the WM tasks and cognitive ability which
was measured with a Japanese intelligence test (Kyodai
NX 15, Osaka & Umemoto, 1973). It was found that the
phenotypic variances on the spatial and verbal task were
significantly due to genetic influences, with heritability
estimates between 43% and 48%. The genetic variance
was due to modality specific factors (spatial and verbal)
and a storage specific factor (7–30%). However, another
part of the genetic variance was due to a common
genetic factor explaining storage and executive func-
tions in both spatial and verbal functions (11–43%).
These findings suggested that multiple, partly over-
lapping genetic factors influence spatial and verbal
working memory. The authors hypothesized that besides
the important function of the prefrontal lobes in working
memory, modality specific regions of the brain, such as
Wernicke's regions (verbal) and the right parietal lobe
(spatial) are involved, and that these regions are
mediated by separate genetic influences. When they
included cognitive ability in the analyses, it was shown
that the common genetic factor found for the WM tasks,
also explained a substantial part of the phenotypic
correlation between the WM tasks and cognition.

Similar findings were presented by Luciano et al.
(2001) who measured processing speed, working
memory and IQ in 166 monozygotic and 190 dizygotic
twin pairs. Subjects were young adults with a mean age
of 16.17 (S.D.=0.34). Processing speed was measured
by a choice reaction task, and working memory was
measured by a visual spatial delayed response task. IQ
was derived from the Multidimensional Aptitude
Battery (MAB, Jackson, 1998). Analysis showed the
presence of a common genetic factor influencing all
variables. In addition there were specific genetic factors
influencing processing speed, working memory and IQ.
Based on their findings the authors speculated that the
genes common to all variables might actually affect the
central executive component of WM, whereas those
genes specific to the WM task, relate to the storage
component.

Neubauer, Spinath, Riemann, Angleitner, and Bor-
kenau (2000) pointed out that a distinction should be
made between WM capacity and WM speed. In a large
sample of adult twins they focused on speed of
information processing. The relationship between
psychometric IQ and two measures of speed of
information processing was investigated. Psychometric
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intelligence was measured with shortened forms of the
Raven's Advanced Progressive Matrices (APM, Raven,
1958) and the Leistung-Prüf-System (LPS, Horn, 1962),
which is a well known German intelligence test.
Processing speed was measured with two Elementary
Cognitive Tasks. The first task was a memory scanning
test based on Sternberg's (1969) Short Term Memory
paradigm. In this test subjects have to randomly store
one, three or five digits. After a warning signal, a target
digit is shown and subjects have to indicate as quickly as
possible if the target digit was part of the previously
shown memory set. The second task was a Posner's
letter-matching test (Posner & Mitchell, 1967). In this
test subjects have to judge physical identity (i.e., visual
discrimination) or name identity (i.e., LTM retrieval) of
two characters. The phenotypic correlations between the
RTs on the Elementary Cognitive Tasks and IQ were
about −0.40 and were largely due to genetic factors.
However, there were also specific genes affecting both
phenotypes. The phenotypic correlations between the
derived slope (i.e., linear increasing RT with increasing
memory load) of the memory scanning task and IQ were
relatively low (0.00–0.12). In discussing their results
Neubauer et al. (2000) suggested that future studies
should include both mental speed and WM capacity to
see if this joint contribution yields higher (genetic)
correlations with human intelligence.

The present study investigates the genetic covariance
between WM speed (WMS) and WM capacity (WMC)
in children. In addition the influence of general IQ (g) on
this genetic covariance is examined. Twelve-year-old
twin pairs and their siblings (N=409) performed a
choice reaction task with three memory loads from
which a basic mental speed measure and the derived
slope, as a reflection of delay caused by higher memory
load, were used. Two subtests of the Wechsler
Intelligence Scale for Children Revised (WISC-R, Van
Haasen et al., 1986) that index capacity components of
WM, namely Arithmetic and Digit Span (Engle, 2002;
Kaufman, 1975) were analysed. General IQ was
estimated by two verbal (Vocabulary and Similarities)
and two performance (Block Design and Object
Assembly) subtests of the WISC-R (Sattler, 1982,
1992).

The first aim is to asses the heritability of WMS and
WMC and to examine to what extent individual
differences in WMS and WMC performance are due
to genetic variation. The second aim is to investigate
whether covariance between WMS and WMC is
explained by pleiotropic genetic effects. We explore
through genetic factor analyses if a common set of genes
influences both the WMS and WMC component.
Structural Equating Modelling was used to test whether
the genetic influences which are important for WMS are
correlated with the genetic influences underlying WMC.
This is established by modelling two genetic factors, one
for WMS and one for WMC, which are allowed to
correlate. If this correlation is one, this means that WMS
and WMC are influenced by a common genetic factor
(i.e., completely overlapping sets of genes). If this
correlation is zero, the two components are influenced
by independent sets of genes. If the correlation has a
value between zero and (minus) one, WMS and WMC
are partly mediated by the same set of genes and partly
by separate sets of genes.

The third aim is to investigate whether g plays a role
in the genetic covariance between WMS and WMC.
Therefore the original model with two correlated genetic
factors for WMS and WMC is extended to a hierarchical
factor model in which genetic influences on g are
modelled as a latent genetic variable influencing the
genetic covariance between WMS and WMC. If, after
incorporating g in the model, the genetic correlation
between WMS and WMC disappears, g explains the
genetic covariance. If the correlation does not change
significantly from the correlation in the original model,
WM itself explains the genetic covariance between
WMS and WMC. If the correlation reduces but is
significantly different from zero, both g and WM
explain the genetic correlation between WMS and
WMC.

2. Methods

2.1. Subjects

The sample consisted of 177 Dutch twin pairs, born
between 1990 and 1992, and 55 of their siblings. The
twins were 12 years old (mean age=12.42, S.D.=0.16)
and the siblings were between 8 and 15 years old.
Twenty-seven siblings were younger than their twin
brothers or sisters (mean age=9.60, S.D.=0.71) and 28
siblings were older (mean age=14.69, S.D.=0.60).
There were 41 monozygotic male twin pairs (MZM), 28
dizygotic male twin pairs (DZM), 56 monozygotic
female twin pairs (MZF), 25 dizygotic female twin pairs
(DZF) and 27 dizygotic opposite-sex twin pairs (DOS).
Zygosity was determined on the basis of DNA
polymorphisms. The twins were registered at birth
with the Netherlands Twin Registry (Boomsma, 1998;
Boomsma et al., 2002). None of the children suffered
from severe physical or mental handicaps. There were
172 twin pairs who had participated in a similar study at
the age of 5 (Groot, De Sonneville, Stins, & Boomsma,
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Fig. 1. Pattern of mean RTs over correct responses, including examples
of stimuli (requiring a yes-response) of Load I, Load II and Load III of
the WMS task.

552 T.J.C. Polderman et al. / Intelligence 34 (2006) 549–560
2004; Stins et al., 2005). The selection at that time was
based on age and a sample evenly distributed across
zygosity groups. To gain power for the current analyses
five extra, dizygotic female twin pairs and 55 siblings of
the twins were recruited (Posthuma & Boomsma, 2000).

The parents were invited for participation of their
children in the continuing study entitled ‘Genetics of
Attention’. In the mailing information about the goals
and procedures of the study were included. After 2
weeks the parents were contacted by phone and asked if
they were willing to participate. Prior to the assessment
parents and children signed an informed consent form.

2.2. Procedure

Assessments always started before 11 a.m. Children
were tested at the same time but in separate rooms by
separate experimenters. All subjects performed the same
neuropsychological test battery consisting of 6 subtests
of the Wechsler Intelligent Scale for Children Revised
(WISC-R, Van Haasen et al., 1986) and computerized
reaction time tasks, measuring a diverse range of
executive functions such as working memory, divided,
sustained, selective and focused attention. The entire
test battery took ∼4 h, including breaks. After finishing
the assessment, each child received a small present.

WMS was assessed with ‘Memory Search’ which is
one of the tasks of the Amsterdam Neuropsychological
Tasks (ANT, De Sonneville, 1999). In this task memory
load, operationalized as target set size, increases from
one to three target letters. The computer screen shows a
fixed display of four consonants arranged in a square
from which subjects must detect one or more target
letters. For Load I the target signal requiring a yes-
response is ‘k’ (40 trials; 50% target signal). For Load II,
target signals are ‘k’+‘r’ (72 trials; 36 complete target
sets, 18 trials one target signal, 18 trials no target
signals) and for Load III target signals are ‘k’+‘r’+‘s’ (96
trials; 48 complete target sets, 16 trials one target signal,
16 trials two target signals, 16 trials no target signals).
Children were instructed to press the yes button only
when a complete set of target letters was present. In all
other instances a no-response was required. An example
of the stimuli is shown in the bottom part of Fig. 1.
Responses were made by pressing the left or right mouse
button. A yes-response was made with the preferred
hand, a no-response with the unpreferred hand. In the
instruction, both speed and accuracy were emphasized.
Twelve practice trials were provided to ensure instruc-
tions were well understood.

WMC was assessed with two subtests of the WISC-
R. Factor analyses exploring the structure of the WISC-
R showed that a three factor solution fitted the data best
(Kaufman, 1975, 1979; Kroonenberg and Berge, 1987;
Reynolds and Kaufman, 1985). One of these factors is
Working Memory and the accompanying tasks are
Arithmetic, Digit Span and Substitution from which the
first two tests were assessed. For general IQ (g) 4
subtests of the WISC-R were used, namely Similarities,
Vocabulary, Block Design and Object Assembly.
Standardized scores of this short form of the WISC
correlates 0.94 with standardized IQ scores based on all
subtests of the WISC-R (Sattler, 1982, 1992).

3. Analyses

3.1. Descriptives

Only correct WMS responses were used for the
analyses. None of the subjects had more than 30%misses
or false alarms. The results of children who had a mean
reaction time (RT) that was higher than three times the
standard deviation above mean RT of the sample (N=8)
and childrenwith a negative slope (i.e., childrenwho had a
lower mean RT for Load 3 than for Load 1, N=3) were
excluded. Data of seven children were not recorded. The
increase in RT across the loads (i.e., the Slope) was
computed as (RT Load III−RT Load I) /2. ANOVA
(SPSS, 11.5) was used to test whether there was a
significant increase in RT with increasing memory load.
To summarize the WMS data the variables Load I, as a
basic mental speed measure, and Slope, as a measure of
delay caused by higher load, were used for further
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analyses. WMC was measured as the number of correct
responses on Arithmetic, and on Digit Span. Data of 3
children were missing. Standardized IQ scores of Simila-
rities, Vocabulary, Block Design and Object Assembly
were used to estimate general IQ (g). Table 1 gives an
overview of total numbers of subjects and total number of
complete twin pairs, and twin-sib pairs for each variable.

3.2. Univariate genetic analyses

The different degree of genetic relatedness between
monozygotic (MZ) twins, dizygotic (DZ) twins, and non-
twin siblings (i.e.,MZ twins share all their geneswhile DZ
twins and siblings share on average half of their genes)
was used to estimate the genetic and environmental con-
tributions to the (co)variance of the variables. The total
variation of each variable can be decomposed into sources
of additive genetic variance (A), common environmental
variance (C) and unique environmental variance (E). A is
due to additive effects of different alleles, C is due to
environmental influences shared by members of a family,
and E is due to environmental influences not shared by
members of a family. E also includes measurement error
and is therefore always included in the models. A first
impression of the relative importance of each component
is obtained by inspecting the standardized covariances,
which are the twin correlations and twin-sib correlations.
MZ correlations twice as high as DZ (and twin-sib)
correlations indicate additive genetic influences. DZ cor-
relations higher than half the MZ correlations designate
common environmental influences. MZ correlations as
high as DZ correlations indicate only common and unique
environmental influences and no genetic sources of
variance (Boomsma, Busjahn, & Peltonen, 2002).

The proportion of phenotypic variance due to genetic
influences is known as the heritability (h2). As power
analyses revealed that the power to detect sex differences
in heritability was low, male and female data were
combined for both zygosities (see Appendix A).
Table 1
Total numbers of first-born twins, second-born twins, and siblings, and
total number of complete twin pairs for each variable

N Load
I

Load
II

Load
III

Slope Arithmetic Digit
span

IQ

First-born
twins

172 170 170 168 175 175 176

Second-born
twins

175 175 173 171 175 174 177

Siblings 53 52 52 52 53 53 52
Total N 400 397 395 391 403 402 405
Complete

twin pairs
171 170 167 166 175 174 176
Structural equating modelling, as implemented in the
statistical software package Mx (Neale, Boker, Xie, &
Maes, 2003), was used to analyse the data. Mx provides
parameter estimates by maximizing the raw data likeli-
hood. The goodness of fit of different models is evaluated
by hierarchic likelihood ratio (χ2) tests. Specifically, the
χ2 statistic is computed by taking twice the difference
between the log-likelihood of the full model and the log-
likelihood of a reduced model (χ2=−2LL0− (−2LL1)).
The associated degrees of freedom are computed as the
difference in degrees of freedom between the two hierar-
chic models (Neale & Cardon, 1992). In addition to the
χ2-statistic, Aikake's Information Criterium (AIC) can be
computed (AIC=χ2− (2*df)). A low AIC indicates a
relative good fit of the model. In a so-called saturated
model means and standard deviations and phenotypic
twin and twin-sib correlations were estimated. A saturated
model is fully parameterized and yields the best possible
fit to the data. It is a useful model for evaluating the fit of
more restricted models. It was tested whether means and
variances of each variable were equal for first-born and
second-born members of a twin pair, for MZ and DZ
twins, and for siblings. In addition, it was tested whether
DZ correlations and twin-sib correlations were equal for
all variables. Full ACE models were fitted to the data of
each variable to see if the phenotypic twin and twin-sib
correlations derived from the saturated models were
attributable to A, C or E. In addition, more parsimonious
models (i.e., AE, CE and E models) were compared to the
ACE model.

3.3. Multivariate analyses

First, an unconstrained decomposition of the covari-
ance structure of WMS and WMC into genetic and
environmental covariance matrices was considered by
means of triangular (or Cholesky) decomposition,
including three variance components A, C and E.
Based on the estimates of the A, C and E covariance
matrices the genetic and environmental correlations
between the variables were computed. The genetic
correlations provide a measure of the extent to which
variables are influenced by the same genes. The
environmental correlations reflect the extent to which
variables are influenced by the same environmental
processes. The most parsimonious Cholesky model (i.e.,
an ACE, AE, CE or E model) was used as a baseline
model against which to compare the hypothesized factor
model for WMS and WMC.

In the factor model the genetic (A) and environmen-
tal components (C and E) were modelled with two latent
factors, one for WMS and one for WMC. This was done
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by deleting four pathways in the original Cholesky
model in such a way that the latent WMS factor loaded
on the WMS variables and the latent WMC factor
loaded on the WMC variables. To examine whether all
the variance could be explained by the latent factors, it
was tested whether genetic effects specific for each
variable could be deleted from the model without
worsening the fit (i.e., all variance is explained by the
latent factors). To examine whether the two factor
structure fitted to the data it was tested if it was allowed
to delete the latent factors for A, C or E (i.e., all variance
is explained by specific factors). If the two latent factors
for A, C, or E could not be deleted from the model they
were allowed to correlate in three different sub models.
In the first sub model the correlation between the two
latent factors for WMS and WMC was estimated freely.
This represented a model with partly independent and
partly overlapping factors. In the second sub model the
correlation between the two factors was constrained to
be 1, reflecting a model with one factor for all variables.
In the third sub model the correlation between the two
factors was constrained to be zero, indicating two
uncorrelated separate factors.

To investigate whether the genetic covariance
between WMS and WMC could (partly) be explained
by g, the factor model was extended with a third latent
Load I Slope

General IQ

Es Es

E

Ag

A wms

(0.4

(0.8

-0.40
(-0.54- -0.26)1- (-0.40)2 

r
-0.25

0.68
(0.59- 0.75)

0.69
(0.60- 0.77)

0.73
(0.66- 0.81)

0.72
(0.64- 0.80)

Fig. 2. Factor loadings of the best fitting hierarchical model with three latent
the WM variables specific factors for E, and for the IQ variable a factor for
brackets. The correlation between the two latent factors A-WMS and A-WM
genetic factor Ag which loaded on general IQ. This
factor Ag was modelled as a higher order factor
controlling the genetic correlation between WMS and
WMC (see Fig. 2). It was tested to what extent the
correlation between the latent WMS and WMC factors
changed in this hierarchical model, compared to the
original factor model. This was done in three ways. First,
the correlation between WMS and WMC was estimated
freely in the hierarchical model. Second, the estimated
correlation from the original model was fixed in the
hierarchical model to test whether the original correla-
tion changed significantly. If not, the genetic correlation
between WMS and WMC would be explained solely by
WM. Third, the correlation was fixed to zero to test
whether Ag could explain all the covariance between
WMS and WMC.

4. Results

4.1. Descriptives

For WMS, RTs were highest in Load III, lower in
Load II and lowest in Load I. These load effects were
significant for MZ and DZ twins, and siblings
(p<0.001). Fig. 1 shows the pattern of mean RTs of
the three memory loads in the entire sample.
Arithmetic Digit span

Es

A wmc

Es

0.50
3-0.58)

0.87
2- 0.90)

0.72
(0.60- 0.82) 1- (0.72)2

0.71
(0.62- 0.78)

0.61
(0.51- 0.69)

0.71
(0.63- 0.78)

0.80
(0.72- 0.86)

factors for additive genetic influences (A-WMS, A-WMC and Ag), for
E. Standardized path loadings are shown with confidence intervals in
C is represented by r.



Table 2
Upper part: means and standard deviations for each variable, with the deviation from the mean for boys, older siblings and younger siblings

RT Load I RT slope Arithmetic Digit span

Mean (deviation: boy/older
sib/younger sib)

811.49 (24.49/−72.95/253.3) 351.08 (23.89/−81.83/288.69) 16.88 (0.92/0.89/−3.75) 11.38 (0.74/1.64/−2.14)

S.D. 144.72 203.20 2.94 2.84
Phenotypic correlations
MZ 0.53 (0.37–0.66) 0.40 (0.22–0.55) 0.59 (0.45–0.69) 0.58 (0.43–0.68)
DZ/twin-sib 0.23 (0.08–0.37) 0.28 (0.11–0.42) 0.11 (−0.04–0.27) 0.24 (0.08–0.39)

Lower part: phenotypic correlations for MZ and DZ/twin-sibling pairs.
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4.2. Univariate genetic modelling

Table 2 shows means and standard deviations inclu-
ding the effects of sex and age on the observed data, and
phenotypic twin and twin-sib correlations for Load I,
Slope, Arithmetic and Digit Span. Means and variances
were equal for twins and siblings, and DZ correlations
and twin-sib correlations were equal for all variables.

Compared to the saturated models, univariate full
ACE models did not worsen the fit significantly.
Evaluating more restricted models against the full
ACE models showed that for Load I, Arithmetic and
Digit Span C could be dropped from the full model.
For Slope it was allowed to drop either A or C from
the full model but not both. This indicated that the
variance was explained by familial influences; how-
ever, it was not possible to distinguish between
genetic or common environmental influences. A and
E contributed equally to the total variance with
heritabilities ranging between 43% and 56%. Table 3
shows univariate model fitting results for full ACE
Table 3
Univariate model fitting results

Model Δχ2 Δdf p AIC

Load I ACE 22.86 14 0.06
AE 0.00 1 – −2.0
CE 8.65 1 0.00 6.6
E 34.51 2 0.00 30.5

Slope ACE 23.81 17 0.12
AE 0.72 1 0.40 −1.2
CE 1.54 1 0.21 −0.4
E 25.24 2 0.00 21.2

Arithmetic ACE 15.19 17 0.58
AE 0.00 1 – −2.0
CE 15.97 1 0.00 13.9
E 39.14 2 0.00 35.1

Digit Span ACE 27 17 0.06
AE 0.00 1 – −2.0
CE 11.21 1 0.00 9.2
E 46.62 2 0.00 42.6

Submodels AE, CE and E are compared with the full ACE model, which in
parameter estimates are put in brackets. Bold indicates the best fitting mode
models and more restricted models per variable,
including parameter estimates.

4.3. Multivariate genetic modelling

Multivariate analyses revealed that the most parsimo-
nious Cholesky model, which was used as a baseline
model, included an additive genetic component (A) and a
unique environmental component (E). Common environ-
mental influences (C) could be dropped from the full
Cholesky model without significantly worsening the fit,
indicating that common environmental influences played
no important role in the covariance between WMS and
WMC. Hence, C was not included in the factor analyses.

Table 4 shows phenotypic, genetic and environmen-
tal correlations between all variables. Phenotypic
correlations between WMS variables (Load I and
Slope) and WMC variables (Arithmetic and Digit
Span) were 0.50 and 0.45 respectively, and between
WMS and WMC variables −0.30 (Load I and Digit
Span), −0.32 (Slope and Digit Span), −0.33 (Load I and
h2 c2 e2

0.51 (.20–.63) 0.00 (.00–.23) 0.49 (.37–.65)
0 0.51 (.36–.63) 0.49 (.37–.64)
5 0.32 (.20–.43) 0.68 (.56–.80)
1

0.26 (.00–.55) 0.14 (.00–.42) 0.60 (.45–.78)
8 0.43 (.27–.56) 0.57 (.44–.73)
6 0.33 (.19–.45) 0.67 (.55–.81)
4

0.54 (.36–67) 0.00 (.00–.12) 0.46 (.33–.61)
0 0.54 (.39–.67) 0.46 (.33–61)
7 0.29 (.17–.41) 0.71 (.59–.83)
4

0.56 (.28–.68) 0.00 (.00–.22) 0.44 (.32–.58)
0 0.56 (.42–.68) 0.44 (.32–.58)
1 0.38 (.25–.48) 0.63 (.52–.75)
2

turn is compared with the saturated model. Confidence intervals of the
l.



Table 4
Phenotypic, genetic and unique environmental correlations among
measures of WMS, WMC, and IQ

Slope Arithmetic Digit span IQ

Load 1 0.50/0.99/
−0.11

−0.33/−0.49/
−0.06

−0.30/−0.46/
0.00

−0.21/−0.36/
−0.06

Slope −0.26/−0.57/
0.15

−0.32/−0.51/
−0.05

−0.25/−0.42/
−0.10

Arithmetic 0.45/0.73/
0.04

0.47/0.75/
0.03

Digit span 0.33/0.48/
0.03

Table 5
Multivariate model fitting results for WMS and WMC

−2 LL χ2 df p AIC rA

i. Cholesky ACE 12,960.63
ii. Cholesky AE 12,960.97 0.341 10 0.99 −19.66

Two factor model
Correlate A
factors free

12,970.04 9.072 10 0.53 −10.93 −0.54

Correlate A
factors 1

13,029.42 68.452 11 0.00 46.45 1.00

Correlate A
factors 0

13,009.24 48.272 11 0.00 26.27 0.00

1Compared to model i.
2Compared to model ii.
Bold indicates the best fitting model.

Table 6
Multivariate model fitting results for WMS, WMC, and IQ

−2 LL χ2 df p AIC rA

Hierarchical factor model
i. Genetic covariance
WMS–WMC
explained by WM
and g

16,155.32 −0.25

Genetic covariance
WMS–WMC
explained by
WM only

16,170.73 15.411 1 0.00 13.41 −0.54

Genetic covariance
WMS–WMC
explained by g only

161,66.99 11.68 1 1 0.00 9.68 0.00

Bold indicates the best fitting model.
1 Compared to model i.
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Arithmetic) and −0.26 (Slope and Arithmetic). Pheno-
typic correlations with IQ were −0.21 (Load I), −0.25
(Slope), 0.47 (Arithmetic) and 0.33 (Digit Span). Lower
mean RTs of WMS were, as expected, negatively
correlated with higher WMC and IQ scores. Genetic
correlations (i.e., the extent to which variables are
influenced by the same genes) were 0.99 between the
WMS variables and 0.73 between the WMC variables.
Genetic correlations between WMS andWMC variables
were lower (∼0.50). This suggested for the genetic
influences (A) on WM two factors, one for the WMS
variables and one for the WMC variables. All unique
environmental correlations were low varying between
−0.10 and 0.15 and suggested no factor structure but
only specific factor loadings for E.

We first tested a model that reflected the genetic (A)
and environmental (E) correlation patterns. In the
Cholesky decomposition, the pathways between the
genetic latent WMS factor (A) and WMC variables
were omitted, and in a similar way, pathways from the
genetic latentWMC factor (A) to theWMSvariableswere
omitted. For unique environment (E) a specific factor for
each variable was specified. The factor model thus con-
tained two latent factors for A (one for theWMS variables
and one for the WMC variables), and four specific factors
for E. It was tested which of the path loadings were
significant. Neither the two factors for A, nor the specific
factor loadings for E could be dropped from the model.
For A it was allowed to drop specific factor loadings for
the variables Load I, Slope and Digit Span. It was then
tested whether the two genetic factors were correlated.
First, by freely estimating the correlation, second, by
constraining the correlation to be one (i.e., a one factor
model), and third, by constraining the correlation to be
zero. Table 5 shows that a model with two genetic factors,
including a freely estimated correlation (−0.54), one
specific factor loading for A (Arithmetics), and four
specific factor loadings for E, fitted best to the WMS and
WMC data. Constraining the correlation to one or zero
showed a significantly worse fit of the model.
Secondly, a hierarchical model for WM and IQ with
Ag as a third latent genetic factor was tested. The latent
factor Ag loaded on general IQ and on the latent genetic
factors for WMS and WMC. The correlation between
WMS and WMC dropped from −0.54 (as in the first
model) to −0.25 in the hierarchical model. Fixing the
correlation to −0.54 showed a significantly worse fit of
the model indicating that g explained a significant part of
the genetic WM correlation. However, fixing the
correlation betweenWMS andWMC to zero also showed
a significant worsening of the fit, which means that it is
not only Ag that explains the genetic covariance between
WMS and WMC. Table 6 shows the results of the
hierarchical sub models. Comparing the correlation of
−0.25 in the hierarchical model to the correlation (−0.54)
in the original factor model, we can conclude that WM
and g contribute both (about 50%) to the genetic
correlation between WMS and WMC. In Fig. 2 the
hierarchical model with three latent factors for A (WMS,
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WMCandAg), the correlation betweenWMS andWMC,
factor loadings and confidence intervals are shown.

5. Discussion

The present study investigated the phenotypic and
genotypic relationship between WM speed and WM
capacity in a sample of 12-year-old twins and their
siblings. It is the first study that investigated the
heritabilities of WM in children of this age, and that
examined the genetic structures underlying WM Speed
(WMS) and WM Capacity (WMC). WMS was assessed
with a choice reaction task with three memory loads from
which a basic mental speed measure and the derived slope
were analysed. For WMC we used two subtests of the
WISC-R namely Arithmetic and Digit Span. To examine
whether the genetic covariance betweenWMS andWMC
could be explained by general IQ (g) we performed a
hierarchical model that tested this hypothesis. General IQ
(g) was based on 4 subtests of the WISC-R, Similarities,
Vocabulary, Block Design and Object Assembly.

The heritabilities for the WM variables were moder-
ately high, ranging from 43% to 56%, indicating that
about half of the phenotypic variance could be explained
by genetic variation. These results are comparable to the
genetic WM studies in adults (Ando et al., 2001; Luciano
et al., 2001). Different heritabilities were reported by
Neubauer et al. (2000). For slope they reported a
heritability of 11% and for memory scanning set size 1,
which is comparable with the basic speed variable of the
current study, they found no heritability at all. Other
studies did find genetic influences on basal speed
measures in adult studies (Boomsma & Somsen, 1991;
McGue, Bouchard, Lykken, & Feuer, 1984). However, it
is suggested that when the complexity of a task increases,
the heritability estimate increases as well (Neubauer et al.,
2000; Vernon, 1989). Children might experience a simple
WMS task or an increasing load (i.e., the Slope) as more
complex than adults do, and therefore use cognitive
resources, which adults do not need. The prefrontal lobes
play an important role in WM performance and the fact
that these brain areas are not completely matured before
late adolescence (Anderson, 2002; Kanemura, Aihara,
Aoki, Araki, & Nakazawa, 2003) may explain the extra
efforts, and hence higher heritabilities in the current age
group. The few genetic studies that investigated WM
speed in children showed conflicting results. A partly
overlapping sample of 5-year-old children performed a
similar WM speed task but in a more child friendly
version (i.e., this task consisted of two loads and used
picture stimuli instead of consonants). Their results were
comparable with the present study showing a heritability
of 54% for overall RT, and 29% for the derived slope
(Stins et al., 2005). Petrill, Thompson, and Detterman
(1995) tested 287 twins between 6 and 13 years old with a
set of basic cognitive tasks (CognitiveAbilities Test, CAT;
Detterman, 1990). Simple and Choice RT tasks were
primarily determined by common environmental factors
while a Stimulus Discrimination task appeared to be more
influenced by genetic factors. WMC in this study, as
measured with a self-paced probe recall task, showed a
heritability of 22%.

We tested the hypothesis that WMS and WMC are
genetically two different constructs. It was found that our
data were best described by two latent factors, one for
WMS (Load I and Slope) and one for WMC (Arithmetic
and Digit Span). These latent factors were correlated
(−0.54) but did not completely overlap. In other words,
variation in WMS and WMC is influenced by separate
genetic factors but also by a common set of genes. How
should the correlated and separate genetic factors be
interpreted? Referring to the existing theories about WM
one might speculate that these findings hold up the
theoretical framework as proposed by Baddeley (1992).
The correlated factors (i.e., the same set of genes)
influencing both WM constructs possibly represent the
general controlling systemwhile the separate factors (i.e.,
separate sets of genes) involve the two slave systems,
responsible for the rehearsal of acoustic information, in
this case WMC, and for the manipulation of visual input
(WMS).Andoetal. (2001)andLucianoetal. (2001) found
a common genetic factor influencing different WM
domains (i.e., verbal and spatial) and they also hypoth-
esized that the common set of genes found in their studies
affected the central executive. Another suggestion for the
common genetic factor is general intelligence (g). It is
found that on a phenotypic level intelligence and WM
performance are strongly related. Kyllonen and Christal
(1990) claimed that ‘reasoning ability is (little more than)
working memory capacity’ and Colom et al. (2004)
revealed that working memory was ‘almost perfectly
predicted by g’. A recent genetic study of Finkel,
Reynolds, McArdle, and Pedersen (2005) showed that
the heritability of cognitive abilities in adulthood results,
for the most part, from genetic influences associated with
perceptual speed, instead of genes for cognitive function-
ing specifically.

In the light of these findings the substantial genetic
correlation that we found betweenWMS andWMCmight
be ‘perfectly’ explained by g, instead of a genetic relation
between WMS and WMC per se. This hypothesis was
tested with a hierarchical factor model in which a third
latent genetic factor (Ag) was allowed to replace the
genetic correlation between WMS and WMC and hence
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could explain the genetic covariance between WMS and
WMC.The results of these analyses showed thatAg could
not explain the genetic correlation completely, but took
out about half of the genetic covariance. This means that
both g and WM are responsible for the shared genes
between WMS and WMC. Looking at the path loadings
from the latent WM factors to Ag (0.72 and −0.40
respectively) it is clear that g is (genetically) closer related
to WMC than WMS. This is in line with previous
(phenotypic) research, but itmight also have to dowith the
choice ofWMC tasks. As both g andWMCwere based on
subtests of the WISC-R, and WMS tasks were reaction
time measures, it is may be not surprising that the former
relationship turned out to be stronger. However, Conway
et al. (2002) measured WMC with primary verbal tasks
and fluid intelligence with nonverbal tasks; still they
found a very strong link between both constructs. This
suggests that the relation between WMC and fluid g is
domain-free. The questionmight bewhetherWMC in this
study was measured in an optimal way. Kyllonen and
Christal (1990) already had serious reservations about
their battery of WMC tasks, and still there is discussion
about the estimation of WM in general and pure
estimation of WMC specifically (Conway et al., 2003;
Cowan et al., 2005; Oberauer et al., 2003).

Beside a significant genetic correlation between
WMS and WMC, our results showed that WMS and
WMC are also mediated by different sets of genes.
These may be interpreted from a neuro-anatomical
point of view. It is reasonable to hypothesize that
different WM processes are driven by different parts of
the brain which are mediated by separate genetic
influences. The existence of distinct neuro-anatomical
substrates for different domains, such as spatial, verbal
and object WM has been suggested by studies on brain
lesions in humans (Müller, Machado, & Knight, 2002)
and by several studies using brain imaging techniques
(Courtney, Ungerleider, Keil, & Haxbey, 1996; Gold-
man-Rakic, 1996; Smith, Jonides, & Koeppe, 1996;
Postle, Berger, Taich, & D'Esposito, 2000). Cornette,
Dupont, Salmon, and Orban (2001) proposed that for
visual stimuli, maintenance of orientations involved a
distributed fronto-parietal network, while a more
medial superior frontal sulcus region was identified
for the manipulative operation of updating orientations
retained in the WM. Cowan et al. (2005) emphasized
that, especially for WM capacity, parietal lobe
mechanisms probably play an important role. They
addressed the question whether cortical areas related to
WM reflect indeed distinct processes or whether they
function as an integrated system. To get a better
understanding of cognitive processes resulting from
complex mechanisms in the brain, extensive research
of different disciplines is required. For future research
a joint contribution of genetic and cognitive investiga-
tions might be a useful and promising approach to
further clarify the mechanisms underlying WM, and in
addition illuminate the relation between WM, g and
other cognitive processes.

Summarizing the current results it is firstly shown
that WMS and WMC are heritable traits. Secondly, that
the variance in WMS and WMC is explained by both an
overlapping set of genes, and a separate set of genes.
Thirdly, that the overlap of genes involves not only WM
processes but is also explained by general IQ (g).
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Appendix A
power to detect sex differences in heritability
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Figure shows the power (y-axis) to detect differences Brinker, P. J. Beek, A. N. Brand, S. J. Maarse,
(Eds.), Computers in psychology. Cognitive e
in heritability (x-axis) between boys and girls given a

sample size of 177 twin pairs and 55 siblings. For a fixed
heritability (h2) of 0.35, 0.50 and 0.75 in one sex, the
power to detect a difference of heritability (Δh2)
between boys and girls of respectively −0.1, −0.2 and
−0.3, −0.1, −0.2, −0.3 and −0.4, and −0.1, −0.2, −0.3,
−0.4, −0.5, −0.6 and −0.7 is shown.
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