
Abstract. Accurate measurement is crucial for under-
standing the processes that underlie exploratory patterns
in motor learning. Accordingly, measures of learning
should be sensitive to the changes that take place during
skill acquisition. Most studies, however, use trial-based
global measures that assess performance but do not
actually measure gradual changes taking place within
trials. The present study attempted to remedy this
shortcoming by analysing a visual adaptation task,
and comparing traditional global measures of learning
with new, within-trial measures. Movement time was the
only global measure sensitive to changes in the move-
ment trajectory during learning. Three new measures
were expected to reveal changes to the movement
trajectory that are associated with learning: (i) the
length of runs, (ii) change of trajectory angle in relation
to the target, and (iii) drift (change in distance from the
target). All three measures were sensitive to learning and
indicated a gradual straightening of the movement
trajectories over trials. Furthermore, three different
methods to partition trajectories into segments were
examined. The new within-trial measures, irrespective of
partitioning method, prove promising for the develop-
ment of a diffuse control model of exploratory learning.

1 Introduction

The process of acquiring a new motor skill involves the
coherent organisation of a number of component skills
(e.g. perceptual, control, exploratory, and pattern learn-
ing). Although the literature describes many types of
learning, measurement remains problematic. Tradition-
ally, researchers have used global measures that asso-
ciate learning with various performance characteristics
(e.g. absolute error, movement time, and average speed)
at the trial level. Trial-based global measures, however,

are incapable of measuring any learning processes that
may be occurring within trials. The inadequacy of trial-
based measures is an enigmatic problem in assessing
exploratory learning. Exploratory learning is perhaps
the most fundamental and, at the same time, the least
understood form of learning; it was first identified more
than a century ago (Thorndike 1898), and is often
labelled ‘‘trial-and-error’’ learning. It has been investi-
gated across a wide variety of situations ranging from
sensorimotor tasks to cognitive problem solving (De
Jong and Van Joolingen 1998; Effken and Kadar 2001;
Touvinen and Sweller 1999).

In the early stages of learning a motor skill, when
learners have to adaptively integrate perceptual infor-
mation with motor control, exploratory learning pre-
vails. At that stage, learning can be regarded as a
transition from highly unstable, exploratory movement
trajectories to more stable and consistent movement
patterns (Shaw et al. 1992). The assessment of explor-
atory learning requires analytic tools that are sufficiently
fine grained to allow within-trial measurement. A more
complete understanding of learning may be obtained by
analysing not only the outcome of learning, but also the
actual spatio-temporal changes in the movement pat-
terns of interest during the learning process (Effken and
Kadar 2001). Current learning measures are unable to
quantify the seemingly random, meandering patterns
associated with exploratory learning.

Recently, Effken and Kadar (2001) successfully applied
a diffuse control model to describe the process of learning
to run a haemodynamic system through a computer dis-
play. In the literature, diffuse processes are usually de-
scribed in two different ways: (i) partial differential
equations used to capture the deterministic nature of the
global process, and (ii) statistical description that captures
the nature of individual movement trajectory’s random-
ness (random walks) (Berg 1983). Adopting the latter
approach, Effken and Kadar (2001) used the statistical
description of run lengths and directional changes during
learning. Runs were mapped into a one-dimensional dis-
tribution on the basis of their length without measuring
their distance from the goal, and directional changes were
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measured relative to the target. Their findings suggested
that exploratory learning could be described as a random
walk process with increasing bias (i.e. a diffusion process
with increasing drift).

It appears that a diffuse control strategy, which ca-
pitalises on a certain degree of randomness (diffusion)
mixed with increasing goal bias (drift), is surprisingly
simple yet highly generic and efficient. An added
advantage is that this model avoids the problem of in-
terpretation in the currently popular fractional random-
walk analysis (Mandelbrot 1982). Specifically, the
interpretation of Hurst’s exponent (Hurst 1951) in terms
of memory and randomness (persistence versus anti-
persistence) is problematic because this temporal corre-
lation-based method is descriptive rather than
explanatory (Peters 1991). Moreover, recent attempts to
use fractional Brownian motion analysis in the context
of human movement control has also been shown to be
highly problematic because it relies on the controversial
open-loop versus closed-loop distinctions (Reed 1982;
Treffner and Kelso 1999). Significantly, the proposed
diffuse control model has the potential to both replace
the traditional trial-and-error model and become an
explanatory model of exploratory learning.

The seemingly random, meandering patterns in vari-
ous motor learning tasks may also be explained by such
a diffuse control strategy. For example, Cunningham
(1989) and Imamizu and Shimojo (1995) had partici-
pants master a perceptual-motor mapping involving
rotation of vision. They found that participants had
considerable difficulty in manoeuvring their hand from a
starting position to a target position when their visual
space had undergone a 90� rotation. Initially, their hand
moved in an erratic fashion, generating highly variable
zigzag-shaped trajectories, strongly suggestive of a bi-
ased random-walk process. After sufficient practice,
movement time was significantly reduced, and the
movements became less meandering, indicating that a
certain amount of learning had taken place. However,
the major drawback with these studies is their exclusive
use of global performance measures (e.g. performance
time, movement time and root-mean-square error),
thereby leaving the finer spatio-temporal changes made
during the course of each trial indiscernible. Although
Cunningham and Vardi (1990) attempted to overcome
the limitations of traditional measures by identifying
and analysing various deterministic and curvilinear-
shaped segments in partitioning of the movement tra-
jectories, a later study suggested this approach was not
particularly useful (Cunningham and Welch 1994). The
diffuse control methodology, in contrast, provides a
qualitatively different way of looking at learning because
the analysis is based upon the properties of the segments
that make up the zigzag trajectories of the hand.

Thus, the present study is an attempt to evaluate the
validity of three within-trial measures of learning (de-
tailed below) derived from the biased random walk/
diffuse control models. The measures were adopted to
explore the changes in hand movement trajectory during
adaptation to the 90� visual rotation task. However, a
direct application of the biased random-walk method-

ology to analysing movement control patterns is prob-
lematic, because movement trajectories consist of
straight and curvilinear segments generated by variable
velocities. To resolve this problem, movement trajecto-
ries were approximated as a sequence of straight-line
segments (polygons). Individual segments of the polygon
and the changes in direction from one segment to the
next were identified in three different ways: (i) by sam-
pling at a specific frequency to provide a temporal par-
titioning of the trajectory, (ii) by identifying large
directional changes as corners and connecting them to
approximate the spatial pattern of the trajectory, and
(iii) by looking at local minimum values (valleys) of the
velocity profile to produce a spatio-temporal partition-
ing. Although none of these methods provide a perfect
trajectory approximation, each method is potentially
useful in future studies depending on the specific aims of
the research. Sampling the trajectory at every fifth point
provides a strictly controlled temporal partitioning of
the learners’ movements and can potentially be used to
relate our proposed measures to the popular Hurst co-
efficients which are also based on equidistant temporal
sampling. This temporal sampling, however, does not
capture the natural dynamics of individual runs or
changes in direction. The second, spatial approximation
method is sensitive to major directional changes and
provides a good approximation of the trajectory’s spa-
tial properties, but is insensitive to stopping points that
are not associated with directional changes, and it is
hard to formalise. Also, this method tends to approxi-
mate a ballistic but curvilinear segment by a series of
linear segments. The third, spatio-temporal method, in
addition to identifying velocity minima associated with
major changes in the movement trajectory, takes into
account movements that appear to be in a straight line
but actually reflect the adoption of a stop–start control
strategy to which the spatial approximation is insensi-
tive. The velocity partitioning is, on the other hand,
insensitive to changes in direction that are unaccompa-
nied by velocity changes (e.g. curvilinear movements)
which the spatial approximation method isolates. Due to
the methodological nature of the present study and the
potential use of these techniques in future research, all
three methods were utilised to evaluate specific proper-
ties of the trajectories.

The segments of the polygons have certain properties,
such as length and direction (Berg and Brown 1972;
Kadar and Virk 1998), which can be used as within-trial
measures of the learning process. More precisely, the
following properties – exemplified in Fig. 1 – were
monitored:

A. Run length of each segment (RL).
B. Angle relative to the target for each segment (AT).
C. Drift (DR) or change in radial distance from the

target.

Monitoring the changes of these variables over time was
predicted to provide sensitive, within-trial measures of
learning. These measures are expected to be superior to
traditional measures of exploratory learning, because (a)
a finer scale analysis of behavioural change is employed
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and (b) the effect of using perceptual information in
learning can be monitored. In addition to these new
measures, performance was also measured using tradi-
tional global parameters [i.e. movement time (MT),
trajectory length (TL), average velocity (AV), and peak
velocity (PV)], thus allowing a comparison between the
new analyses and existing findings based on traditional
analyses.

2 Method

2.1 Participants

Five right-handed postgraduate students, one male and
four female, participated in the experiment. Participants

were naive to the task requirements and had normal or
corrected-to-normal-vision.

2.2 Apparatus

Figure 2 depicts the experimental arrangement. All
participants were seated at a table holding a stylus in
their right hand. A curtain, placed directly in front of the
learner, prevented vision of the arm. The stylus was 4 cm
high and had a 5 cm square base to maintain the vertical
orientation while it was moved by the learners across the
surface of the table from a central target to peripheral
targets placed 0�, 45�, 90�, 135�, 180�, 225�, 270� and
315� from vertical and at a distance of 15 cm. A
reflective disc was mounted on the top of the stylus to
allow movements to be tracked using a three-dimen-
sional movement-analysis system (MacReflex system:
two infrared cameras with a sampling frequency of 30
Hz). Recordings were made on a dedicated Power
Macintosh G3 computer. A small camera, hidden from
the participant’s view to prevent prior knowledge of the
visual rotation, was mounted above the table’s surface
to provide each participant with feedback. Feedback
was presented on a TV monitor placed approximately
2 m from the participant. Presenting remote feedback
that is rotated out of the plane of the movement is easy
for the learner to accommodate and has minimal effects
on learning (Cunningham and Welch 1994; Ghilardi
et al. 1995; Goodbody and Wolpert 1999). The targets
were white discs, 1.5 cm in diameter, placed on the
surface of the TV monitor. In addition to a 90�
anticlockwise rotation of the visually presented feed-
back, movements of 15 cm by the participant translated
to a 9.5 cm movement on the screen creating further
stimulus–response incompatibility. Thus, movements

Fig. 1. Hypothetical biased random-walk trajectories, consisting of
five segments connecting start and target positions. Each segment has
a length (RL), drift (DR), and makes an angle with the target (AT)

Fig. 2. Apparatus layout
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made to the right appeared to move up the screen and
movements toward or away from the body appeared to
move right and left, respectively. All participants wore a
black glove and low-contrast illumination was used to
allow visual identification of the reflective disc mounted
on the stylus but prevent visual feedback about the arm
from the TV monitor.

2.3 Procedure

Participants were informed that they would be taking
part in a learning experiment that involved moving a
hand-held object from a central starting position to one
of eight possible target locations and returning it to the
starting position. They were told that they would not be
able to see their hand or arm directly, but that feedback
about the position of the hand would be provided on the
TV monitor. They were unaware of the 90� visual
rotation prior to commencing their first trial. Partici-
pants were required to perform five blocks of eight trials,
consisting of a movement to each of the eight peripheral
targets in a random order and a return movement to the
central target. When moving to the target, participants
were instructed to move quickly and not worry too
much about accuracy. Upon reaching the target, partic-
ipants were requested to pause for 2 s before returning
to the central target (i.e. the starting position). This
allowed subsequent partitioning of the series of move-
ments into two trials. A new target was specified by the
experimenter a few seconds after returning to the

starting position. Participants were asked to make full
use of the visual feedback provided on the monitor
rather than trying to think about strategies in control-
ling their actions.

2.4 Analysis

Several custom-made computer programs were written
and tested for calculating all the relevant parameters of
the movement trajectories. Moving to a peripheral target
and returning to the central starting position were
treated as two separate trials. Since we were interested in
only the ballistic segments of the movement, the
individual trial profiles were then reduced by removing
the final ‘‘homing phase’’, which is associated with a
significant drop in velocity (below 10 mm s)1) and short
movements centred on the target (within 15 mm;
Goodbody and Wolpert 1999). Typical examples of
movement trajectories from trials early and late in the
learning process with the homing phase removed can be
seen in Fig. 3. Prior to the actual analysis, the movement
trajectories of each trial were approximated as a
sequence of straight-line segments (polygons). This was
accomplished in three ways. The first method involved
sampling every fifth data point to provide a temporal
partitioning of each trajectory. The second method
involved visually segmenting each trial run based on
angular changes to the trajectory. The X–Y coordinates
of the greatest angular deviation were recorded for each
significant, visible change to the trajectory profile. This

Fig. 3. The top panel illustrates the homing phase
cut-off point (right side) for analysis of the ballistic
phase of the movement. Typical movement trajec-
tories from early and late trials (middle left and
middle right panels, respectively) and a single
movement trajectory, midway through learning,
showing angle-partitioned segments (lower left
panel; trajectory is shown transposed to the right for
clarity) and velocity-partitioned segments (lower
right panel)
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partitioning method produced a spatial segmentation of
the spatial deviations produced by the learner while
attempting to reach the target.

The third partitioning method was based on the ve-
locity changes that are associated with angular devia-
tions in the movement trajectory. Changes in direction
from one segment to the next were identified by local
minimum velocity values (‘‘valleys’’). In each trial, val-
leys were defined in two ways: (i) as a minimum after a
drop in the velocity profile below the mean velocity
followed by an increase above the mean velocity, and (ii)
by a significant drop in velocity of one or more standard
deviations, followed by a similarly significant increase of
velocity. Coordinates were generated corresponding to
the minimum velocity within a single valley. Typical
examples of the segmented trajectories can be seen in
Fig. 3. For each segment the RL, AT and DR or change
in radial distance from the target were measured
(Fig. 1). In addition to these new measures, perfor-
mance was examined using traditional global parame-
ters (i.e. MT, TL, AV and PV). For ease of
interpretation all analyses were performed on blocks of
eight trials with the direction of the movement (towards
the peripheral target or returning to the central target) as
an additional within-subjects factor. Thus, a block ·
direction (5 · 2) analysis of variance (ANOVA) with
repeated measures on both factors was performed tak-
ing each of the global and new within-trial measures’
means as dependent variables. In some cases the as-
sumption of sphericity was violated (Mauchley’s test of
sphericity), and so Greenhouse–Geisser’s epsilon-ad-
justed probabilities are reported for all analyses. Al-
though, changes in variability are often associated with
learning, an analysis of the variability for the measures
reported here revealed no obvious trends, except for MT
which showed a gradual decrease in between-subject
variability.

3 Results

3.1 Global outcome measures

The results of the repeated-measures ANOVAs with
each of the four global measures as dependent variables
can be seen in Table 1 (Mean, Standard error and 95%
confidence intervals for each measure are given in Table
2.). It is apparent that the only global measure sensitive
to a change over the blocks, and thereby suggesting that
any learning had taken place, was MT. Multiple
pairwise comparisons were calculated to isolate the
effect of block. MT during block 1 was found to be
significantly longer than during all other blocks except
block 2; blocks 2 and 3 also had longer MTs than block
5. No other differences were apparent. In addition, the
only measure to demonstrate an effect of direction was,
again, MT. MT towards the peripheral targets was
longer than MT towards the central target (p < 0.05).
No significant interactions were found (Table 1). Mean
values for each of the four global outcome measures
from blocks 1 to 5 are illustrated in Fig. 4.

3.2 Within-trial measures: temporally partitioned data

Three separate block · direction (5 · 2) ANOVAs with
repeated measures on both factors was carried out with
RL, AT and DR as the dependent measures. Only one
significant effect was found (Table 1); specifically, AT
decreased over the blocks (Fig. 5). Post-hoc compari-
sons (least-significant differences) revealed that AT was
larger during block 1 than during all other blocks except
block 5 (p < 0.05). It should be noted that DR was
found to be marginally significant (p ¼ 0.06).

3.3 Within-trial measures: spatially partitioned data

The results can be seen in Table 1. All four measures
showed significant effects of the block. Specifically, RL
was shorter during block 1 than during blocks 3–5, and
RL for blocks 2 and 3 was shorter than for block 5,
suggesting a gradual increase in RL over the entire
learning period (p < 0.05). AT was greater during block
1 than during all other blocks, which did not differ from
each other. Trials became less meandering over the
learning period. There was also a gradual change
evident for DR. During block 1, DR was shorter than

Table 1. Results of analysis of variance with repeated measures for
all dependent variables

df
Block
4, 16

Direction
1, 4

Block ·
direction 4, 16

Traditional measures
Movement time F 8.06 14.79 2.08

p 0.04 0.02 0.22
Average velocity F 1.04 1.99 0.83

p 0.38 0.23 0.47
Peak velocity F 1.77 1.86 1.11

p 0.25 0.24 0.37
Distance moved F 3.21 4.95 1.72

p 0.15 0.09 0.26

Temporally partitioned data
Run length F 1.67 1.63 1.12

p 0.26 0.27 0.36
Angle to target F 7.94 5.93 0.60

p 0.03 0.07 0.57
Drift F 4.27 4.44 0.34

p 0.06 0.10 0.70

Spatially partitioned data
Run length F 10.52 2.90 0.78

p <0.01 0.16 0.46
Angle to target F 14.39 11.01 0.11

p 0.01 0.03 0.91
Drift F 18.18 7.43 0.17

p <0.01 0.05 0.79

Velocity-partitioned data
Run length F 4.12 4.92 1.92

p 0.02* 0.09 0.21
Angle to target F 18.41 5.76 0.51

p <0.01 0.07 0.61
Drift F 12.24 20.05 0.45

p <0.01 0.01 0.67

(*non-adjusted probability, Mauchley’s test of sphericity non-signi-
ficant)
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during blocks 2–5; DR during block 2 was shorter
than during blocks 4 and 5 and shorter during block 3
than during block 5 (all p < 0.05). In addition, a
significant effect of direction was found for the AT
measure, with mean AT greater in trials towards
peripheral targets than in trials to the central target
(p < 0.05). That is, the trials towards peripheral targets

were more meandering than trials to the central target.
The effect of direction for DR approached significance
(p ¼ 0.053), supporting the notion reported by all
participants that movement to the central target was
easier than that to the peripheral target. Mean values for
each measure are illustrated in Fig. 6.

3.4 Within-trial measures: velocity partitioned data

The same analysis was replicated for the polygons
generated by the velocity-based approximation. Again,
significant effects of the block were found for all three
measures (Table 1). A pattern of results similar to that
found for the angle-partitioned data was found for the
velocity-partitioned data. Pairwise multiple comparisons
were utilised for closer examination of the block and
direction effects (a ¼ 0.05 in all cases). RL was shorter in
block 1 than during all other blocks, RL in block 2 was
shorter than in blocks 4 and 5, and RL in block 3 was
shorter than in block 5. This pattern of results is almost
identical to that found using the angle partitioning
method, and again indicates a gradual increase in RL
during learning. AT was greater in block 1 than during
all other blocks, consistent with the previous results. For
the DR measure, significant differences were found
between blocks 1, 3, 4 and 5, blocks 2, 4 and 5, and
blocks 3 and 5. In all cases the earlier blocks displayed
lower mean DR than the later blocks, as predicted. The
effect of direction evidenced for the DR measure was a
reflection of longer mean DR for trials towards the
central target compared with trials towards the periph-
eral target. Mean values can be seen in Fig. 7.

Fig. 4. Global outcome measures over blocks 1–5 (diamonds,
movements to peripheral target; squares, return movements to central
target)

Fig. 5. Within-trial measures over blocks 1–5 for temporally parti-
tioned segments (diamonds, movements to peripheral target; squares,
return movements to central target)

Fig. 6. Within-trial measures over blocks 1–5 for angle-partitioned
segments (diamonds, movements to peripheral target; squares, return
movements to central target)
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3.5 Distribution of runs during learning

Although the primary aim of this study was not a test of
the diffuse control model itself, the proposed within-trial
measures allow us to provide a simple statistical demon-
stration of the validity of the proposed model of
exploratory learning. Thus, according to our postulated
model of learning, the typical change in the meandering
paths during learning would be due to a reduction in the
role of randomness in movement production. We would
thus expect runs to be distributed evenly across the
available directions of movement during initial trials
(reflecting a random distribution), but to be almost
exclusively confined to the optimal direction of movement
(reflecting a large target bias) in later trials. In all three
partitioning methods, the number of runs for each of six
possible AT categories was calculated for blocks 1 and 5,
and are represented in Fig. 8. Runs are distributed more
evenly during block 1 than during block 5. It is apparent
that during block 1, runs were performed across the
spectrum of possible directions. Nevertheless, Fig. 8
shows that individual runs were not evenly distributed;
rather, they were biased towards the optimal direction of
zero degrees from the beginning of learning. This obser-
vation provides preliminary support for the notion that
random generation of movement paths may be playing a
role in this process, but further analysis (e.g. of temporal
correlation) is required before the role of randomness can
be successfully described in a formal model.

4 Discussion

Accurate measurement is crucial for understanding the
processes that underlie exploratory patterns in motor

learning. Accordingly, measures of learning should be
sensitive to the changes that take place during skill
acquisition, yet most studies have used trial-based global
measures. They measure overall performance but do not
actually measure the gradual changes taking place within
trials. The present study attempted to remedy this
shortcoming by analysing a visual adaptation task,
adopted from Cunningham (1989), and comparing
traditional trial-based measures of learning with new,
within-trial measures.

Four traditional measures (i.e. MT, TL, AV and PV)
were used to assess adaptation to a 90� anticlockwise
rotation of the visual field. Of the four traditional
measures, only one – MT (overall time taken to com-
plete a trial) – was sensitive to gradual changes associ-
ated with learning.1 This result replicates previous
research that has demonstrated reductions in MT during

Fig. 7. Within-trial measures over blocks 1–5 for velocity-partitioned
segments (diamonds, movements to peripheral target; squares, return
movements to central target)

Fig. 8. Number of runs, represented as a percentage of the overall
number of runs, occurring within each of six AT categories during
blocks 1 and 5 (temporal partitioning, upper panel; spatial partition-
ing, middle panel; spatio-temporal partitioning, lower panel

1 The lack of effect for the other global measures is somewhat
surprising. We have replicated the study with further 32 partici-
pants over various practice schedules and have found essentially
similar results for both the global and within-trial measures. That is
to say, our proposed within-trial measures and MT seem to be
similarly effective measures of learning in this experimental design
(based on blocks of eight trials).
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the course of adaptation to visual rotation (Cunningham
1989; Imamizu and Shimojo 1995). The MT was sig-
nificantly longer for movement towards the peripheral
targets than the return movement to the centre target,
demonstrating that the return movements benefited
from learning that occurred on the previous outward
movement. This measure, however, provides no indica-
tion of the way in which participants adapted their
movements to accomplish the task. For example, par-
ticipants were asked to produce straight-line trajectories
but their movement patterns were initially meandering.

The apparent randomness in these patterns and the
gradual change in producing less meandering trajecto-
ries are impossible to discern using the global measures.
For this reason, finer measurement of the within-trial
changes linked to learning is required to supplement the
global measures.

The three within-trial measures – RL, DR and AT – ,
were designed to capture the decrease in meandering of
the learner’s movement trajectories. All three measures
proved sensitive to the gradual emergence of straight
trajectories from highly meandering trajectories that

Table 2. Mean, standard error, lower bound and upper bound 95% confidence intervals for all measures (in rows 1–4 for each measure,
respectively)
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were characteristic of early attempts to complete the
task. The changes in the three measures suggest that
participants were able to learn the new mapping between
their actions and the perceived outcome, and that this
adaptation occurred gradually, throughout learning,
rather than being isolated within the first block of trials
as seems to be the case with all the global measures.

In addition to the validation of the new within-trial
measures, three partitioning methods were used to re-
duce the trajectories to polygons. It appears that the
first, temporal, partitioning method seems to be the least
effective; it did not show the same sensitivity as the other
two methods. Also, it fails to satisfactorily capture the
dynamics of the movements produced whilst performing
the task. Nevertheless, this partitioning strategy might
be useful in future research because it can provide the
basis for building a bridge to the currently popular
fractional Brownian-motion analysis. The other two
methods – spatial and velocity (spatio-temporal) based –
seem to provide better approximation strategies. Both
reveal the actual movements made by the performer and
hence are more readily interpretable when assessing the
control of motor actions. The spatial approximation
method yielded similar results to the velocity method.
Unfortunately, the use of this method might be prob-
lematic in future research because an appropriate algo-
rithm for our manual strategy could not be defined,
therefore the velocity-based partitioning would be pref-
erable as the primary method of choice in future appli-
cations of these measures.

These findings represent a step forward in the mea-
surement of exploratory motor learning. Two levels of
analysis were used and positive results were found for
both. On a global level, the time taken to complete each
trial was sensitive to changes associated with learning
and direction of movement. Although MT is a sensitive
global measure, it is clearly insufficient to describe ex-
ploratory learning. Exploratory learning is more than
just a reduction in time taken to complete the task. The
proposed within-trial measures appear to be valid can-
didates for this role because they capture the essence of
the learning process. Participants were able to make
perceptually guided movements that brought them suc-
cessively closer to the target. The DR measure, derived
from the RL and the direction of the run in relation to
the target (AT), provides a measure of task success (i.e.
getting closer to the target) independently of whether the
learner’s hand is moving directly towards the target or in
a direction that reduces the distance between the hand
and the target. The movement trajectory can be altered
in response to decreasing or negative DR (moving to-
wards the target at a successively slower rate or moving
away from the target, respectively) rather than a planned
alteration based on predicted position, current direction
and distance moved. Since the bias in directional
changes and RL can be captured by DR, it might be

appropriate to categorise the underlying learning pro-
cess as a diffuse control strategy with increasing DR. For
this reason, the DR measure is currently being utilised
by the authors to develop a detailed model of explor-
atory learning based on the concept of diffuse control.
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